CWHT Report January to June 2016

Reporting Period

Report Date : August 2016
Period: January $1^{\text {st }} 2016$ - June 30th 2016

Report:

The aim of this report is to provide an overview analysis of the Health Checks conducted by Healthcare Screening Ireland on behalf of CWHT.
Disclaimer:
Health Diagnostics Ltd makes no guarantees regarding the accuracy of information in this report as the data used has been supplied by the operators conducting the Health Checks.

You may use abstracts from this report for your own personal use provided that you fully acknowledge that this report is the source of the material. Commercial use is not permitted unless the written permission of Health Diagnostics is obtained before such use.

All calculations/charts are produced using Microsoft Excel. In order for the percentages to be shown as whole numbers Excel rounds up/down to the nearest whole number.

To interpret the charts/graphs correctly please read them in connection with the result tables provided for each indicator.

Monthly Activity and Test Type

This report is for period: August 2016
Tests included in this report: 2047

Test Type:	Total	$\%$
CVD Health Check:	1827	89%
Other:	220	11%
Total Tests included:	$\mathbf{2 0 4 7}$	

Demographics by Gender \& Age

GENDER	Male	$\%$	Female	$\%$
<20	30	94%	2	6%
$20-29$	397	96%	17	4%
$30-39$	728	97%	19	3%
$40-49$	478	97%	17	3%
$50-59$	275	94%	18	6%
$60-69$	64	97%	2	3%
$70-74$	0	0%	0	0%
≥ 75	0	0%	0	0%

Demographics by Ethnicity

ETHNICITY	Total	$\%$
White - British	25	1%
White - Irish	1855	91%
White - Any Other Background	150	7%
Mixed - White and Black Caribbean	0	0%
Mixed - White and Black African	0	0%
Mixed - White and Asian	0	0%
Mixed - White and Other Background	1	0%
Asian or Asian British Indian	2	0%
Asian or Asian British Pakistani	1	0%
Asian or Asian British Bangladeshi	0	0%
Asian or Asian British Other Background	2	0%
Black or Black British Caribbean	1	0%
Black or Black British African	2	0%
Black or Black British Other Background	0	0%
Chinese	5	0%
Other Ethnic Group	3	0%
Not stated	0	0%

Smoking / Alcohol (AUDIT-C Questionnaire) / Physical Activity (GPPAQ)

SMOKING	Male	Female	Total	$\%$
Never smoked	909	30	939	47%
Ex smoker	382	12	394	20%
Smoke cigarettes	639	15	654	33%
Smoke pipe	1	0	1	0%
Smoke cigar	3	3	3	0%
Not Stated	0	0	0	0%
Total	$\mathbf{1 9 3 4}$	$\mathbf{6 0}$	$\mathbf{1 9 9 1}$	

ALCOHOL	Male	Female	Total	$\%$
Total $<5:$ Sensible drinking	626	38	$\mathbf{6 6 4}$	$\mathbf{3 4 \%}$
Total $>5:$ Hazardous or harmful drinking	1285	19	$\mathbf{1 3 0 4}$	$\mathbf{6 6 \%}$
Total	1911	57	$\mathbf{1 9 6 8}$	

GPPAQ	Male	Female	Total	$\%$
Physically impossible	1	0	$\mathbf{1}$	$\mathbf{0} \%$
Inactive	89	10	$\mathbf{9 9}$	$\mathbf{5 \%}$
Moderately inactive	144	9	$\mathbf{1 5 3}$	$\mathbf{8 \%}$
Moderately active	314	13	$\mathbf{3 2 7}$	$\mathbf{1 7 \%}$
Active	1286	20	$\mathbf{1 3 0 6}$	$\mathbf{6 9 \%}$
Total	$\mathbf{1 8 3 4}$	$\mathbf{5 2}$	$\mathbf{1 8 8 6}$	

Waist / Body Mass Index (BMI)

WAIST	Male	Female	Total	$\%$
OK	9	7	16	46%
Increased Risk	7	4	11	31%
High Risk	2	6	8	23%
Total	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{3 5}$	

BMI	Male	Female	Total	$\%$
Underweight	1	0	1	0%
Healthy weight	685	40	725	36%
Overweight	946	21	967	48%
Obese	316	12	328	16%
Morbidly Obese	12	2	14	1%
Total	$\mathbf{1 9 6 0}$	$\mathbf{7 5}$	$\mathbf{2 0 3 5}$	

Blood Pressure

SYSTOLIC BP	Male	Female	Total	$\%$
Hypotension <90	1	0	1	0%
Desired 90-119	671	43	714	35%
Prehypertension 120-139	1163	28	1191	59%
Stage 1 Hypertension 140-159	110	1	111	5%
Stage 2 Hypertension -160-179	12	2	14	1%
Hypertensive Crisis ≥ 180	3	0	3	0%
Total	$\mathbf{1 9 6 0}$	$\mathbf{7 4}$	$\mathbf{2 0 3 4}$	

Systolic BP

- Hypotension <90
- Desired 90-119
- Prehypertension 120-139
- Stage 1 Hypertension 140-159

■Stage 2 Hypertension -160-179

- Hypertensive Crisis ≥ 180

DIASTOLIC BP	Male	Female	Total	$\%$
Hypotension <60	23	0	23	1%
Desired 60-79	997	47	1044	51%
Prehypertension 80-89	819	24	843	41%
Stage 1 Hypertension 90-99	88	2	90	4%
Stage 2 Hypertension 100-109	22	0	22	1%
Hypertensive Crisis ≥ 110	11	1	12	1%
Total	$\mathbf{1 9 6 0}$	$\mathbf{7 4}$	$\mathbf{2 0 3 4}$	

Pulse Palpation

PULSE RHYTHM	Male	$\%$	Female	$\%$	Total
Regular	1925	96%	72	4%	1997
Irregular	14	88%	2	13%	16
Total	1939	0%	74	0%	2013

HBA1C / Diabetes Test

HBA1C / DIABETES	Male	$\%$	Female	$\%$	Total	$\%$
$<6 \% / 42 \mathrm{mmol} / \mathrm{mol}$	1906	97%	58	3%	1964	98%
$\geq 6 \% / 42 \mathrm{mmol} / \mathrm{mol}$	46	100%	0	0%	46	2%
Total	$\mathbf{1 9 5 2}$	0%	$\mathbf{5 8}$	0%	$\mathbf{2 0 1 0}$	

TOTAL CHOLESTEROL	Male	Female	Total	$\%$
Desirable $<5.2 \mathrm{mmo} / \mathrm{L}$	1263	45	1308	65%
Borderline high 5.2 to $6.2 \mathrm{mmol} / \mathrm{L}$	532	22	554	27%
High $>6.2 \mathrm{mmol} / \mathrm{L}$	152	6	158	8%
Total	$\mathbf{1 9 4 7}$	$\mathbf{7 3}$	$\mathbf{2 0 2 0}$	

HDL Cholesterol

HDL	Male	Female	Total	$\%$
Higher risk $(\mathrm{M}<1.00) / \mathrm{F}<1.20) \mathrm{mmol} / \mathrm{L}$	446	17	463	23%
Range $(\mathrm{M}-1.00$ to 1.53$) /(\mathrm{F}-1.20$ to 1.53$) \mathrm{mmol} / \mathrm{L}$	1171	19	1190	59%
Desirable $>1.53 \mathrm{mmol} / \mathrm{L}$	340	37	377	19%
Total	$\mathbf{1 9 5 7}$	$\mathbf{7 3}$	$\mathbf{2 0 3 0}$	

Triglycerides

TRIGLYCERIDES	Male	Female	Total	$\%$
Optimal $<1.7 \mathrm{mmol} / \mathrm{L}$	1071	56	1127	56%
Borderline high $1.7-2.2 \mathrm{mmol} / \mathrm{L}$	396	9	405	20%
High $2.3-5.6 \mathrm{mmol} / \mathrm{L}$	454	7	461	23%
Very high $>5.6 \mathrm{mmol} / \mathrm{L}$	12	1	13	1%
Total	1933	73	2006	

LDL Cholesterol

LDL	Male	Female	Total	$\%$
Optimal $<2.6 \mathrm{mmol} / \mathrm{L}$	996	41	1037	53%
Near optimal $2.6-3.3 \mathrm{mmol} / \mathrm{L}$	601	19	620	31%
Borderline high 3.4-4.1 $\mathrm{mmol} / \mathrm{L}$	248	9	257	13%
High 4.2-4.9 $\mathrm{mmol} / \mathrm{L}$	41	2	43	2%
Very high $>5.0 \mathrm{mmol} / \mathrm{L}$	12	0	12	1%
Total	1898	71	1969	

TC/HDL RATIO	Male	Female	Total	$\%$
$\mathrm{TC/HDL}<5$	1557	67	1624	80%
$\mathrm{TC/HDL} 5-5.9$	225	5	230	11%
$\mathrm{TC/HDL} 6-7.4$	131	1	132	7%
$\mathrm{TC/HDL} \geq 7.5$	41	0	41	2%
Total	1954	73	2027	

Heart Age

HEART AGE	Male	Female	Total	$\%$
≤ 4 years above actual age	1711	44	1755	93%
$5-9$ years above actual age	69	2	71	4%
$10-14$ years above actual age	0	0	0	0%
$15-19$ years above actual age	3	0	3	0%
≥ 20 years above actual age	33	19	52	3%
Total	1816	65	1881	

CVD Risk

CVD RISK	Male	$\%$	Female	$\%$	Total	$\%$
Low CVD <10\%	1624	91%	44	96%	1668	91%
Med CVD 10\% -19.9\%	134	8%	2	4%	136	7%
High CVD > 20\%	23	1%	0	0%	23	1%
Total	1781		46		1827	

CVD Risk by Age and Gender

Male	Female							
	$\times 10 \%$				$40-49$	$50-59$	$60-69$	$70-74$
$40-49$	$50-59$	$60-69$	$70-74$					
Med CVD 10\%-19.9\%	416	167	9	0	9	10	1	0
High CVD $\geq 20 \%$	3	72	43	0	0	2	0	0

Lung Function

FORCED EXPIRATORY VOLUME (FEV1)	Male	Female	Total	$\%$
Normal	1870	56	1926	96%
At Risk	81	2	83	4%

FORCED VITAL CAPACITY (FVC)	Male	Female	Total	$\%$
Normal	1914	56	1970	98%
At Risk	35	2	37	2%

PEAK EXPIRATORY FLOW (PEF)	Male	Female	Total	$\%$
Normal	1951	56	2007	100%
At Risk	0	2	2	0%

Advice and Referrals

REFERRALS	GP	ALC	SMK	CWGT	LWGT	LIFE	EXER
Referred	435	64	47	101	98	96	92
Not Referred	1558	1930	1947	1893	1896	1898	1902
Referral Declined	1	0	0	0	0	0	0
Blank	53	53	53	53	53	53	53

HIGH CVD RISK	Quantity
High CVD Risk	23
High CVD Risk and referred	0
Referred to GP for other reason	387
High CVD Risk and not referred	0

REFERRAL KEY	
GP	GP Referral
ALC	Alcohol referral
SMK	Smoking referral
CWGT	Commercial weight management program
LWGT	Local authority weight management program
LIFE	Lifestyle referral
EXER	Exercise referral

HIGH CVD RISK AND REFERRED (CVD $\geq 20 \%$ AND REF_GP = 1)

For clarification, this figure indicates the number of high CVD risk tests where the operator ticked 'Yes' in the 'Referred to GP' column. As the computer does not physically send the data to the GP, there is an assumption that the operator has done what he/she has indicated and gone through the referral process.
REFERRED TO GP FOR OTHER REASON (CVD < 20\% AND REF_GP = 1)
This figure indicates the number of low and medium CVD risk tests where the operator ticked 'Yes' in the 'Referred to GP' column - they were referring for one of the other referral criteria listed on the local referral guidelines and not for CVD risk, for example, high blood pressure.

HIGH CVD RISK AND NOT REFERRED (CVD $\geq \mathbf{2 0 \%}$ AND REF_GP = 0)

This figure indicates the number of high CVD risk tests which should have been referred and the software suggested that a referral be made but the operator has not ticked 'Yes' in the 'Referred to GP' column to indicate they have. This may simply have been an oversight on their part, but may have referred them verbally.

